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Abstract

Link weight is crucial in weighted complex networks. It provides
additional dimension for describing and adjusting the properties of
networks. The topological role of weight is studied by the effects of
random redistribution of link weights based on regular network with
initial homogeneous weight. The small world effect emerges due to the
weight randomization. Its effects on the dynamical systems coupled
by weighted networks are also investigated. Randomization of weight
can increase the transition temperature in Ising model and enhance
the ability of synchronization of chaotic systems dramatically.

PACS: 89.75.Hc 05.50.+q 05.45.Xt

Network analysis is now widely used to describe the relationship and
collective behavior in many fields[1, 2]. A binary network has a set of ver-
tices and a set of edges which represent the relationships between any two
vertices. Obviously, the edge only represents the presence or absence of
interaction. It will be a strong limitation when such an approach is used
to describe relations with different strength or having more levels. In fact,
the interaction strength usually plays an important role in many real net-
works. For example, the number of passengers or flights between any two
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airports in airport networks[3, 4, 5], the closeness of any two scientists in
scientific collaboration networks[6, 7, 8, 9], the reaction rates in metabolic
networks[10] are all crucial in the characterization of the corresponding net-
works. So it is necessary to take the link weight into account and to study
weighted networks. Recently more and more studies in complex networks fo-
cus on the weighted networks. The problems involve the definition of weight
and other quantities which characterize the weighted networks[11, 12, 9],
the empirical studies about its statistical properties[13, 14, 15, 8], evolving
models[16, 17, 18, 19, 20], and transportation or other dynamics on weighted
networks[21, 22, 23].

Weight, a quantity reflects the strength of interaction, gives more in-
formation about networks besides its topology dominated by links. Weight
provides additional dimension to describe and to adjust network proper-
ties. However, how important is the weight, or what significant changes on
network structures are induced when weight is changed? This question is re-
lated to the role of weight. It should be a fundamental problem in the study
of weighted networks. But it has not been investigated deeply in previous
studies.

For weighted networks, the redistribution of weight on links provide an-
other way to adjust network structure besides the change of links between
vertices. The role of weight could be studied both by its effects on network
structures and its effects on dynamical processes taking place on networks.
The effects of weight on network structures can be investigated on single ver-
tex statistics, such as degree and clustering coefficient, and global properties
such as distance, betweenness and especially community structure. The ef-
fects of weight on dynamics can be examined by the collective behaviors
of dynamical systems, such as the synchronization of oscillators or chaos,
the phase transition of spin system, the coherent oscillations of excitable
systems, the spread of an infectious disease, the propagation of information,
and so on. Except we consider the difference of above properties between
unweighted and weighted networks, an efficient way to study the effects of
weight is to consider the difference after disturbing the weight distribution.
We have introduced the way to disturb the weight distribution and inves-
tigated its effects on network structures including single vertex statistics,
distance[9], and community structure[24] in several real networks. The con-
clusion revealed that link weight has effects on network structures especially
on the global properties. Similar to the method used by Watt and Strogatz
in their discussion on small-world networks[25], here we present a more gen-
eral method to investigate the effect of weight based on regular networks and
an idealized construction. The results are interesting and valuable because
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real networks are usually weighted and the redistribution of weight on links
provides another significant way to improve the structure and function of
networks.

Effects of Weight on the Structure of Networks Usually there are
two kinds of weight in weighted networks. One is dissimilar weight, such as
the distance between two airports. Dissimilar weight has same meaning as
the distance in binary networks. The bigger is the weight, the larger is the
distance between two nodes. Another kind of weight is similar weight, such
as the times of coauthoring of scientists in scientific collaboration networks
and the flux in metabolic network. Similar weight has opposite meaning
as the general distance in binary networks. The bigger weight means the
smaller distance between two vertices. If the weight is defined in sense of
similarity, the calculation of such similarity for example between two ver-
tices connected by two edges (with w1 and w2 respectively) is w̃ = 1

1

w1
+ 1

w2

[8]. In our following discussions, for simplicity and without losing any gen-
eralization, the weight on links is dissimilar weight with wij ∈ [1,∞) if not
mentioned. Then the distance of a path can be easily get from the sum of
weight.

For weighted networks, the generalization of Watts-Strogatz clustering
coefficient is not entirely trivial. We must define a quantity to measure the
strength of connections within i’s neighborhood. B. J. Kim has argued that
this quantity should fulfill four requirements and then provided a definition
of weighted clustering coefficients[26]. In order to apply his definition to our
weighted networks, we should first convert our dissimilar weight into similar
weight w̃ij =

1

wij
, then we have w̃ij ∈ [0, 1]. Using the following equation

cw(i) =

∑
jk w̃ijw̃jkw̃ki

maxij w̃ij

∑
jk w̃ijw̃ki

(1)

we can get the local clustering coefficient for every node i and then get the
average clustering coefficient of the network.

In order to investigate the effects of weight on network structure, we
consider the same methodology of constructing WS small-world networks.
Instead of considering the link random rewiring procedure, we study the
effects of random redistribution of weight on links for weighted regular net-
work. Starting from a ring lattice with N vertices and k edges per vertex,
each edge has a same weight w=5 in the initial state. Firstly, we divide the
weight into a smaller unit ∆w (∆w = 1). Secondly, we extract randomly
each unit with probability p. Lastly, we equiprobably lay back each unit to
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Figure 1: Characteristic path length L(p)/L(0) and clustering coefficient
C(p)/C(0) for the family of randomly weight redistributed networks (N =
200). k is the edges per vertex. All the results (including Fig.2) are average
over 20 random realizations of the redistribution process.

all links. Without changing of links among vertices, this construction al-
lows us to have a regular network with uniform weight distribution (p=0, δ
distribution) and random weight distribution (p=1, Gaussian distribution).
And through the investigation of the intermediate region 0 < p < 1, we can
know the effects of weight redistribution.

The same as WS small-world network, we use average path length L(p)
and clustering coefficient C(p) to quantify the structural properties of the
network. Fig. 1 reveals that with the random redistribution of link weight,
the average path length decreases obviously, while the average clustering
coefficient increases. So it gives the similar phenomenon as small-world
effect, but here it is caused by the random redistribution of weight instead
of rewiring of links.

It seems that above effects of weight redistribution are more significant
in dense networks than in sparse networks. For a given randomization prob-
ability p, Fig. 2 (a) gives the results of L(p) as a function of degree k. With
the increase of the denseness of network, the decrease of L(p) becomes more
and more obvious and L(p) reaches an extremum to some extent. Then the
effect becomes less with the following increase of k.

It is interesting to notice that above effects are not related with the scale
of networks. We try this procedure for other networks with different scales
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Figure 2: (a) With a given random redistribution probability p, L(p)/L(0)
as a function of network denseness described by k/N (N = 200). (b)For
networks with different scale, the curves are almost the same (p = 1).

(number of vertices N). If we re-scale the system with the quantity k/N
(which describes the denseness of networks), we could get similar curves for
L(p)/L(0). This demonstrates the robustness of the results (Fig 2(b)).

The idealized construction above gives the small-world phenomenon due
to the random redistribution of weight in networks. In order to know the
detailed change of network structure, we examine the distribution of vertex
and link betweenness after redistributing weight. As shown in Fig. 3, from
the initial homogeneous case, the distribution of link betweenness becomes
power-law and the distribution of vertex betweenness turns into Γ distri-
bution. The result shows that some hubs emerge as a result of the weight
randomization. Hence the predicted changes in the structure indicate that
we have changed the global structural features due to the only random re-
distribution of weight without changing connections.

Effects of weight randomization on Dynamics For investigating
the functional significance of weight redistribution, we impose this method
on spin systems and synchronization of chaotic systems on networks.

A. Spin Systems The phase transition of Ising model on many kinds of
networks have been studied deeply. In small-world network, the transition
temperature Tc of Ising model increases with the rewiring probability p [28,
29]. In most previous studies of spin model on networks, spin interactions
have been assumed to be uniform. But in reality, interactions are different
with each other. In reference [27], the geometrical distance is considered as
the interaction strength between any two nodes i and j. In this letter, we

5



1 10 100 1000

0.1

1

10

100

1000

Fr
eq

ue
nc

y 
C

ou
nt

(a)  Link Betweenness

 K=30

0 1000 2000 3000 4000 5000

0

2

4

6

8

Fr
eq

ue
nc

y 
C

ou
nt

(b)  Vertex Betweenness

 k=30

Figure 3: Distribution of link (a) and node (b) betweenness after the full
random redistribution of weight(p = 1).

consider both nearest-neighbor and next nearest-neighbor interactions[30]
on weighted regular networks. The Hamiltonian for Ising model on network
is given by

H = −
1

2

∑

i 6=j

Jijσiσj, (2)

where σi(= ±1) is the Ising spin on node i. Given the dissimilar weight
wij between any two nodes i and j connected directly, the interaction Jij
reads 1/wij if i and j are connected directly, reads 1/mins(wis + wsj) if
i and j are next nearest-neighbor and reads 0 for other conditions. The
transition process is described by the magnetization M = 1

N

∑N
i=1 σi. From

a given temperature T and random initial spin state, we perform annealing
algorithm to describe the evolution of the system. In the process, if ∆H =
Hnew−Hold > 0, transition probability from low energy state to high energy
state is exp(−∆H

T
) .

Starting from a ring lattice with N = 500 vertices and k = 200 edges
per vertex, each link has same weight w=1 in the initial network. Then we
redistribute each ∆w = 0.1 randomly with probability p. We find that the
phase transition courses vary with different redistribution probability p (Fig.
4). It shows that the randomization of weight has induced the increase of
critical temperature Tc. The redistribution of weight has similar effects as
the rewiring of links on phase transition.

B. Synchronization of Chaotic System Since their introduction in
1989 [31], coupled maps have been studied as a paradigmatic example in
the study of the emergent behavior of complex systems as diverse as eco-
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Figure 4: Magnetization M evolves with temperature T for homogeneous
(p = 0) and fully randomization (p = 1) of weight distribution. All the
results are the average over 20 runs from different random initial configura-
tions of spins.

logical networks, the immune system, or neural and cellular networks. In
recent years, the synchronization of chaotic system on complex networks
has drawn much attention. In [32], chaotic system on randomly coupled
maps is investigated. It is found that the synchronization properties of the
system are strongly dependent on the particular architecture. Graphs with
the same number connectivity might have very different collective behavior.
The previous works focused mainly on the effect of topology of network on
the synchronization. Here we investigate regular networks of chaotic maps
connected symmetrically and mainly focus the influence of redistributing
weight on synchronization. We take the following coupled map

xi(t+ 1) = (1− εi)f(xi(t)) +
λ

m

∑

i 6=j

Jijf(xj(t)), (3)

where xi(t) is the state variable and t denotes the discrete time. f(x)
prescribes the local dynamics, and is chosen as the logistic map f(xi) =
αxi(1 − xi) with α = 3.9. εi = λ

m

∑
i 6=j Jij gives the long-range cou-

pling strength, where the sum is taken over all the m coupling nodes with
i. We consider both nearest-neighbor and next nearest-neighbor couplings
and take the same Jij as in Ising system and parameters are N = 300,
k = 120, w = 1 and ∆w = 0.1. We make use of Degree of Synchronization
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Figure 5: (a) Final d as the function of λ for homogeneous (p = 0) and fully
randomization (p = 1) of weight distribution. (b) The final d as the function
of probability p with λ = 0.65.

d = 1
N

∑N
i |xi −E(xi)| to discriminant whether to reach synchronization or

not. In the simulation, we neglect 500 steps as the transitional process and
d is the average of following 1500 steps. All the results are the average over
50 runs from different initial conditions.

We first compare the final Degree of Synchronization d of homogeneous
(p = 0) and fully randomization (p = 1) of weight distribution for given
average weight. The results (Fig.5 (a)) show that the redistribution of weight
is helpful to the synchronization of system. Fig.5 (b) gives the final d as the
function of probability p. The randomization of weight enhances the ability
of synchronization.

In this letter, we emphasize the effects of weight on the structural prop-
erties and function of networks. We explore a simple model of networks with
regular connections and homogeneous weight. Instead of rewiring links, we
introduce a method of randomly redistributing weight of links. Its effects
are investigated both on structural properties and dynamical systems. With
the random redistribution of weight, we observed the similar properties as
in WS small-world networks. That is the average path length declines while
the clustering coefficient is increased. We have also found that the random
redistribution of weight can lead to the increase of critical temperature in
Ising model and enhance the ability of synchronization of coupled chaotic
systems.

Different from the most previous research on complex networks, which fo-
cus on the topological structure and its influences to the dynamical process,
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our investigation here illuminates the effects of weight. From the previous
study on dynamical systems on networks with homogeneous coupling, it is
already known that the variation of link weight will affect the global func-
tion of networks. But our results demonstrate that the change of weight
distribution can also cause some significant effects on the subtle structural
features and the functions of the given networks. These results reveal that
network topology coupled by weight distribution should be essential to un-
derstand the structural properties and function of weighted networks in real
world.

The work is partially supported by 985 project and NSFC under the
grant No.70431002 and No.70471080.
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