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Evolution of Function-Call Network Reliability
in Android Operating System
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Abstract— Operating systems (OS) are critical infrastructures
for information system. To design a highly reliable software,
it is essential to understand the architecture feature of operating
systems, which is recently explored by network analysis. While
most focus is on the topological properties, the network reliability
is rarely studied. In this paper, based on percolation method,
we analyze the function-call graph of Android OS in different
levels. While OS network is more vulnerable under degree-based
percolation at node level, it becomes more vulnerable under
strength-based percolation at community level. Furthermore,
we found that although topological properties of kernel network
are evolving with different released versions, percolation proper-
ties seem rather stable. Our findings may help to understand the
reliability principle of OS architecture and to design new system
testing methods.

Index Terms— Complex networks, evolution, Android OS
kernel, percolation, reliability.

I. INTRODUCTION

AS ONE of the largest man-made systems, the software
system is a typical complex system and will become

more complicated due to the increasing and multiple require-
ments. For instance, even a simple component of a software
system needs more than millions of LOC (lines of code). Thus,
it is urgent to well understand the interaction in this complex
system, given the frequent failures even if it is written by
experts [1]. Different from hardware systems which require
reliable circuit design [2], [3], the traditional software analysis
methods have mainly focused on the code level. Complex
network theory, as an emerging and hot analytical tool for
complex systems, can be used to analyze the complex software
system in the architecture level which also supports network
reliability analysis using both qualitative and quantitative
methods. The application of complex network theory to the
software system emerged recently by Myers CR [4]. Concas
et al. [5] and Louridas et al. [6] subsequently observed
the power-laws in software system. The scale-free and small-
world features were further identified in software networks

Manuscript received May 14, 2019; revised October 14, 2019 and
December 27, 2019; accepted February 5, 2020. Date of publication
February 14, 2020; date of current version April 1, 2020. This work was
supported by the National Natural Science Foundation of China under Grant
71822101. This article was recommended by Associate Editor W. X. Zheng.
(Corresponding author: Daqing Li.)

The authors are with the School of Reliability and Systems Engineer-
ing, Beihang University, Beijing 100191, China (e-mail: yaodszx@163.com;
sun_pengfei@foxmail.com; ysk@buaa.edu.cn; daqingl@buaa.edu.cn).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSI.2020.2972995

by Valverde et al. [7]. While the complex network theory
has been applied to software system for an in-depth under-
standing of its structure characteristic, the reliability feature
of corresponding software network and its evolution remains
unclear. The research of network reliability focuses on the
ability of system to withstand various perturbations. Classical
network reliability studies terminal reliability with probability
calculations [8], [9], mostly for hardware system. For software
system, network reliability is also essential yet unsolved for
its critical role in the system design and operation.

Therefore, percolation theory, as an emerging approach [10],
is utilized to identify the operational limit and study how this
limit evolves with updates of complex system. In this paper,
we investigate the reliability evolution of Android kernel by
modeling a function-call network, whose nodes and edges
are respectively functions and call relations between them
extracted from kernel’s source code. The main contributions of
this paper can be listed as follows: 1) the community analysis
to abstract the network and establishment of the community
-interaction network revealing the function interaction in the
large scale; 2) the reliability of kernel network is analyzed
by percolation theory in different scales; 3) the topological
evolution of function network from different kernel versions;
4) reliability evolution of function-call network across different
kernel versions.

The organization of the paper is as follows. The related
work is arranged in Section II. Section III introduces the
preliminaries. In Section IV, analysis of single function-call
network is depicted in three aspects. Section V analyzes
evolution of function-call network in different release versions.
Section VI draws conclusions.

II. RELATED WORK

Nowadays, the demand of smartphones is fast growing,
which requires to study the reliability of their operating
systems as foundation of the whole software systems in
smartphones. As one of the main operating systems, reliability
of Android system is critical for the system performance,
especially with various interactions among a huge number of
functions. Android is a Linux-based operating system (OS)
with its framework consisting of 5 levels from bottom to top:
Linux Kernel, HAL, Native Libraries & Android Runtime,
Android Framework and Applications. The major faults in
Android OS occur in the following components [11]: Audio,
Camera, Bluetooth, Phone, Kernel, WIFI, etc. Due to its
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essential role in system function, the failures in kernel may
lead to the fatal error in the whole system, so that the analysis
of kernel is essential and valuable for the reliability and
stability of Android OS. C. Wright et al. [12] proposed
a general security support method to minimize the impact
to Linux kernel by using LSM (Linux Security Module).
Gu et al. [13] observed the Linux kernel behavior under errors
by experiments.

Over the past few decades, it has become more and more
universal to analyze real-world complex systems from a
complex network perspective, through modeling the entities
and their interactions as nodes and edges of networks. Due
to the limited model ability of regular network, Erdös and
Rényi proposed Erdös-Rényi (ER) random network model [14]
in1959. However, while neither regular lattices nor random
networks can describe real-world complex systems, there
are two famous network models introduced at the end of
last century: the small-world network model [15] and the
scale-free network model [16]. After that, with the deeper
understanding and blossoming of complex network science,
researches have been greatly prompted different network mod-
els in diverse domains, such as World Wide Web [17], cyber-
physical systems [18], [19], epidemic spreading [20], [21],
traffic dynamics [22]–[24], network control [25], [26], power
grids [27]–[30], airport networks [31] etc. Given the com-
plexity of modern software system, one attractive aspect
is to use complex network model to understand software
systems.

With complex network theory, the investigation of soft-
ware system is based on the exploration of components and
their dependencies called components dependency network
(CDN) [32]. Researchers make contribution to the model
and topological analysis of software network in different
granularities: packages, class, method or function level and
multi-granularity with the combination of the three mentioned
above [32]–[34]. The structure of software network has been
studied with the utilization of community analysis combined
with functionality in different software and multiple versions
of the same software [35], [36]. The software execution
processes have been first modeled as evolving complex net-
work [1] and been promoted by analyzing the key node
behavior in software execution network [37]. Except for the
research mainly focusing on some specific software, the study
of OS in complex network perspective has also been performed
recently. Yan et al. [38] analyzed the topology and evolution
of Linux-kernel network compared with genomes by building
the hierarchical structures. Two new network growth models
were developed by Zheng [39] to analyze Gentoo Linux
whose network cannot be easily explained by existing complex
network models. The investigation of Gao et al. [40] shows
that critical nodes in kernel’s complex network tend to have
large in-degree by conducting percolation analysis to the
whole network. The coupling relationships between Linux’s
components were uncovered by Wang et al. [41]. They
also compared networks extracted from normal and failure
status of Linux OS to perform effects analysis of system
failures on networks. Xiao et al. [42] studied the evolution
of 62 major releases of the Linux kernel by utilizing complex

network theory and analyzed changing events among versions
in network perspective.

III. PRELIMINARIES

In this section, some preliminaries about the model and
analysis methods are briefly introduced.

A. Research Data

Android OS is based on Linux kernel, which has more
than 1300 releases ranging from version 1.0 to 5.1 (the latest
release version) over the past 20 years. Since the main released
versions utilized in Android OS are a series of 4.x versions
such as 4.4, 4.9, 4.14 and 4.19 released version, the research
data of function-call network are obtained from 21 releases
ranging from version 4.0 to 4.20.

B. Network Modeling

The kernel of Android OS contains a great deal of functions
which are capable of calling each other. Therefore, the mod-
eling of the function-call network is an effective approach to
visualize the interaction between these functions in the kernel.
In order to extract data of function call, we modify the kernel’s
makefile and then use the regular expression module in python
to calculate the nodes and edges. Finally, we generate the
function-call network model in kernel from the compiling
process of kernel source code. In addition, since the actual
utilization of Linux kernel never loads all existing modules,
a config based on the fundamental arm64 CPU architecture
is implemented during the compiling process and the kernel
studied here will only contain modules in that config with the
file location——‘/arch/arm64/config/defconfig’.

Obviously, the model is a directed network. There is a
demo of function-call network and the source code shown
in Fig. 1, which is generated by a part of C file located at
‘/arch/arm64/kernel/module.c’. Fig. 2 (for better visualization,
the edges have been removed) depicts the whole function-
call network of kernel V4.9 using different colors to identify
different models, such as drivers, kernel, fs, mm, etc.

The function-call network can be defined as a directed
network G (V, E), where V = {v1, v2, . . . , vN } is the set of
N nodes in accordance with functions. The interaction among
each couple of function vertexes vs and vt (vs , vt ∈ V ) is
represented by E = {e1, e2, . . . , eM } which is the set of M
edges with every single ei = (vs , vt ) (i = 1, 2, . . . , M). All
network statistics used in this paper are presented as follows.

1) Average Degree kaverage: In-degree kin implies the
number of a given function called by other functions, and
out-degree kout symbolizes the number of functions called by
a given function. The total degree k of a directed network is
the sum of kin and kout . The kaverage in this paper represents
the average total degree k as follows:

kaverage =
∑
N

(kin
i + kout

i )

N
(1)
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Fig. 1. A display for transforming function-calls into a directed network.
(a) A fraction of source code in Linux kernel with simplification. (b) The cor-
responding function-call network whose nodes and edges represent functions
and call relations extracted from (a).

Fig. 2. Function-call network. This is a diagrammatic drawing for the stable
version 4.9 of Linux kernel in a network perspective. Each node represents
a function in kernel and edges have been removed for a better visualization.
Different colors of network are utilized for labeling different modules.

2) Degree Distribution P(k): The degree distribution is an
effective method to identify the category of network models,
and reflects the topological structure of software system.
It suggests that the degree in this function-call network seems
a power-law distribution as follows:

P (k) ∝ k−γ (2)

where P(k) is the probability of nodes in the network having
degree k, and γ is the scaling parameter.

3) Betweenness: Betweenness is an important indicator [43]
for metric of node significance in the whole network

integration. The betweenness of a node vi in a network is
the ratio between Sjl(i), the number of the shortest paths
between any of two nodes v j , vl passing through node vi ,
and Sjl , the total number of shortest paths. Here we assume
that network has N nodes. The expression appears as shown:

Bi =
∑
j,l∈N
j �=l �=i

[
Sjl (i)

Sjl

]
(3)

4) Clustering Coefficient C: The probability that one ver-
tex’s neighbors in a network are linked with each other is
utilized to define the clustering coefficient. It reflects the local
aggregation of network. The tightly connected neighborhoods
will get larger clustering coefficient. As an unweighted net-
work is determined, the C of vertex i is defined as [44]:

Ci =
1
2

∑
j �=i

∑
h �=(i, j ) ai j aiha jh

1
2 ki (ki − 1)

(4)

where ai j = 1 (the basic component of adjacency matrix)
when there is a link from vertex i to j ; if not, ai j = 0. Item
ai j aiha jh represents the existence of a triangle around i . For
the entire network, the clustering coefficient C is depicted as:

C = 1

N

N∑
i=1

Ci (5)

5) Average Shortest Path Length d: The average shortest
path length equals to the mean of all shortest steps between
two vertexes in a network. It can represent network’s efficiency
of information or mass transport. The average shortest path
length is denoted as follows:

d = 1

N(N − 1)

∑
vs ,vt∈V

d(vs , vt ) (6)

where d(vs, vt ) is the shortest path length from s to t .

C. K-Core Analysis

When a given network G (V, E) is determined, a k-core [45]
is equivalent to a subnetwork Gh = (V , E |Vh) composed of
the set Vh belonging to V if and only if ∀vi ∈ Vh : ki ≥ k.
Remind that Gh is the maximal subnetwork with this statistic.

1) Coreness: The vertex in the k-core but not in the (k +1)-
core is identical to the node which has a coreness of k.
The maximal coreness kmax, the same to graph coreness,
is considered as the main core of a graph. Notice that the
(kmax + 1)-core is empty, but the kmax-core is not.

2) Core Size: The number of vertices in k-core is utilized
to represent core size.

3) K-Shell: All vertexes with coreness k form a k-shell Sk .
Therefore, the k-core consists of all Sq with q ≥ k.

As is depicted in Fig. 3, there is a display of k-core decom-
position where the peripheral dotted line contains 1-core.
2-core will be apparent after removing all of blue nodes whose
degree equals to 1. And the innermost part whose nodes are
red is the 3-core part, the main core of this graph.
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Fig. 3. An example of k-core decompostion. The coreness of this network
kmax is 3. We use three dotted line to divide the network into three parts.
The red part is 3-core, also 3-shell, with nodes whose degree equals to 3 after
removing other nodes. The middle part with green color is 2-shell and the
both red and green part constitute 2-core. The peripheral part in network is
1-shell with blue color.

IV. ANALYSIS OF A SINGLE FUNCTION-CALL NETWORK

In this part, the topological feature of function-call network
has been revealed. We then study the community structure and
the percolation analysis is implemented.

A. Degree and Betweenness Distribution of
Function-Call Network

The function-call network of kernel V.4.9 is analyzed in
this section for studying the distribution of both degree and
betweenness.

The log-log plots of in-degree and out-degree distribution
are shown respectively in Fig. 4. The result of fitting shows
that the γin is around 2.409 and γout is around 3.554. We can
find that the distributions of kin and kout signify the hetero-
geneity between different functions (kout of 13.41% nodes
equals to 0, and of 1.06% nodes equals to 10; kin of 36.11%
nodes equals to 0, and of 0.35% nodes equals to 10). The
large amount of nodes with small kin and kout also implies
that most of nodes are the starting or ending functions in
a process, which initiate a function call or terminate a call-
trace respectively. For the gap between kin−max and kout−max,
it is suggested [38] that programmers always tend to abandon
the usage of a function with too many calls for the enhance
of reliability, and some fundamental functions are frequently
called by multiple functions.

The Fig. 5 shows that the betweenness of function-call
networks also seems to follow a power-law distribution (γB is
around 1.854). This is related to the heterogeneous distribution
of degree, which cause a heterogeneous distribution of shortest
path. Meanwhile, since the software system usually has a
modular structure, nodes connecting different modules also
have a high betweenness. In the following we will further
study the community structure of kernel system.

Fig. 4. Degree distribution of function-call network of Linux kernel
V4.9. (a) In-degree distributions (log-log plot) in function-call network.
(b) Out-degree distributions (log-log plot) in function-call network. Both
kin and kout seem to follow a power-law distribution with γ = 2.409 and
3.554 respectively.

Fig. 5. Betweenness distribution (log-log plot) in function-call network of
Linux kernel V4.9. The betweenness of function-call networks seems to follow
a power-law distribution (γB is around 1.854).

B. Community Structure Analysis

In this subsection, we implement community analysis in
function-call network based on the kernel V4.9 and make an
effort to reconstruct the network in a community perspective.

1) The Community Structure of Kernel: As a typical soft-
ware system, kernel of Android OS could have a community
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structure. There are two main approaches to analyze the
community structure: one is based on code repositories and the
other is based on topology analysis. The community structure
analysis based on code repositories is generated by developers.
For instance, there are several folders in directory of kernel
source code: arch, drivers, documentation, init, kernel and so
on, while different folders represent different features. This
approach to analyze community structure is convenient for
operation. Meanwhile, classification by developers may not
reflect essence of interaction between communities if the code
repositories designed improperly. The community structure
analysis based on topology analysis is more complicated,
however, it can steadily help researchers comprehend the
community structure. We use Louvain algorithm [46] based
on modularity to analyze the community structure of android
OS kernel.

Focus on the mesoscopic level of network structure, a net-
work can be divided into different clusters by utilizing the
modularity as a metric [47]. Modularity is defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q = 1

2M

∑
i, j

[
Aij − ki k j

2M

]
δ
(
ci , c j

)

δ (u, v) =
{

1 u = v
0 u �= v

ki =
∑

j

Ai j

M = 1

2

∑
i j

Ai j

(7)

where Aij is the adjacency matrix of the network, ki is the
degree of vi , ci is the community vi belongs to, and M
is the total number of edges. According to this algorithm,
we eventually reveal the kernel’s community structure with
242 components to build a community-interaction network in
the following.

2) Community-Interaction Network Analysis: To analyze
the interaction of the communities in kernel, we model the
network of community-interaction, whose nodes and edges are
communities and interactions between communities respec-
tively. In the function-call network, 457 nodes which can form
162 communities are not connected to maximum connected
subgroup, i.e. the communities built by those 457 nodes
cannot interact to the communities in maximum connected
subgroup so that we only analyze 80 communities which
have interactions. The weights of edges are the amounts of
the call times between two communities. We finally get a
directed-weighted community-interaction network which can
be visualized in Fig. 6. The diameter of a node reflects the
quantity of functions contained in this community. The nodes
of darker color have a higher degree than those of light color.
In addition, the weight of the edges is measured by the number
of function-calls between different communities which is in
proportion to the width of links. The network features are
shown in TABLE I. Strength Si is an indicator to measure
the information-exchange strength of the node vi [48], and is

Fig. 6. Community-interaction network. The nodes and edges of community
-interaction network are communities and their interactions respectively. The
size of a node community indicates the number of functions belonging to
this community. The weights of edges (wi j ) are the amounts of the call times
between two communities. The shade of color is utilized to signify the degree
of node which will be darker with higher degree.

TABLE I

STATISTIC FEATURES OF COMMUNITY-INTERACTION NETWORK

defined as follows:
si =

∑
j∈N

wi j (8)

where wi j is the weight between node vi and node v j

We find that there are relationships between the size and
the topological features for a given community. As is demon-
strated in Fig. 7, we normalize the degree, strength and
betweenness of each community by its maximum value. The
relation between strength and size n is approximately linear,
suggesting that large community takes more responsibility for
information -exchange task of the whole system. While degree
is increasing with community size in a log function, between-
ness is likely to be a quadratic function of size. This suggests
that the integration of the whole system is positively correlated
with node degree, leading to a fast growth of community
betweenness with community size. In this way, we can predict
the topological statistics for a given community. The result can
be conductive to the design of kernel’s functions.
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Fig. 7. Relationships between the size of community n and three topological
features (degree, strength and betweenness) in community-interaction net-
work. For a better comparison result, three topological features are normalized
by its maximum value. The black curve shows degree is increasing with
community size in a log function, while betweenness is likely to be a quadratic
function of size labeled by red. The blue line indicates that relation between
size n and strength is approximately linear.

C. Percolation Analysis

Percolation theory is a method to analyze the reliability of
networks when the networks are perturbed or attacked [10].
With the increasing removal ratio of nodes or links, the critical
structures can be exposed in percolation process. We can mea-
sure the size of maximal connected component and observe
the variation of its size with removal ratio. In this way, we can
analyze the robustness of the system and find out critical nodes
with special topological features.

1) Percolation Analysis of Function-Call Network: We
attack the function-call network by following modes: random,
based on degree or based on betweenness. The result of the
attack is shown in Fig. 8. In Fig.8, G is the size of maximal
connected component and attack ratio is the percentage of
the nodes we remove in the network. We found that the
function-call network has a relative good robustness under
random attacks, while it become vulnerable if we remove
nodes according to its degree. We can identify the nodes with
the higher degree as the critical functions in the function-call
network such as the “kfree” (with its degree equals to 3530),
a function that release the memory in a dynamic way, and
“printk” (with its degree equals to 3485) which is a basic
function to control the print of output.

2) Percolation Analysis of Community-Interaction Network:
Instead of node level, percolation of community level can tell
more information in the large scale. Based on the community
analysis in Section 3, the community-interaction network is
attacked by the same three modes above, together with the
strength-based mode. The result of the attack is shown in Fig.9.
In Fig. 9, the diagram suggests that the velocity of network
breakdown is highest under the mode of strength-based attack,
while the network performance of the degree-based is almost
identical to that of betweenness-based attack. Fig. 9 also illus-
trates that the critical nodes are the communities with higher
strength in the community-interaction network. For example,
the community with highest strength includes 5156 functions.

Fig. 8. Percolation process in function-call network. G is the proportion of
maximal connected component in the whole network and attack ratio is the
percentage of the nodes we remove in the network. The percolation process
contains three node attack modes: random (black dotted line), degree-based
(red dotted dash line) and betweenness-based (blue dash line).

Fig. 9. Percolation process in community-interaction network. Gc is
the proportion of maximal connected component in community-interaction
network and attack ratio is the percentage of the nodes we remove also
at community level. The percolation process contains four node attack
modes: random (black squares), degree-based (red circles), betweenness-based
(blue triangles) and strength-based (green triangles).

To better understand and visualize the process of percolation,
Fig. 10 is assigned to monitor the percolation under degree-
based attack mode by showing the community-network with
three different attack ratio. The network covered by red is
maximal connected component and the grey parts depict
failure. Under each degree-based attack ratio, the different
organization scale of the whole software network is emerged
gradually.

V. EVOLUTION OF FUNCTION-CALL NETWORK

A. Evolutions of Topological Properties

In this part, analysis of the evolutions of network properties
over 21 major Linux kernel releases is proposed.

According to the information provided by Linux offi-
cial [49], the released time of stable kernel ranging from
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Fig. 10. The visualization of percolation process in community-interaction network. Four snapshots have been chosen in the degree-based percolation when
the attack ratio equals to 0, 0.05, 0.15 and 0.25 respectively. The normal nodes and their edges are shown in red and become grey when they have been
attacked.

V4.0 to V4.20 in sequence lasted from April 12 in 2015 to
December 23, 2018, during which the growth of software
development is both rapid and changeable, under the urge
requirement of the updated hardware. This trend becomes
obvious and inevitable in kernel of Android OS, a highly com-
plex and fundamental software level as well. As is depicted
in Fig. 11(a), the scale of kernel network increases almost
linearly with the specific version respectively, after the abrupt
increase at version 5. This is also confirmed by the increase
of total number of network edges in Fig. 11(b), suggesting the
relation between network size and its interactions.

The development of software can be classified into 2 major
actions: adding new functions, and adding new calling rela-
tions. We can observe the competition between these 2 actions
from network average degree. For the evolutions of the aver-
age degree kaverage in Fig. 11(c), we select a few specific
versions whose kaverage tend to greatly change compared to
the previous release to divide the whole trend into three stages.
With a sharp descending at the end of first stage at version 3,
the kaverage of kernel network decreases to the minimum at
version 5 which may be caused by adding more basic functions
with low interactions. In next stage from V4.8 to V4.15,
the degree k seems rather stable. It is suggested that some
internal balance is kept when adding multiple new features
to satisfy the requirement of users. After V4.16, kaverage

begins to increase. The trend of kaverage is similar to that
of the clustering coefficient C in Fig. 11(d). This suggests the

updated function networks are mostly localized and influence
the clustering coefficient in the same way. We will check this
deeply in the following k-core decomposition analysis.

Fig. 11(e) displays the variation of betweenness B with the
increasing of sub-version sequence. Because of the modularity
and decoupling features of Android OS, it turns out to be
heterogeneous distribution of betweenness of kernel network.
After V4.3, average betweenness is decreasing with a sharp
decline until version 8. Adding new functions will increase the
total information load, yet generate more new paths to share
the load between the same pair. This may suggest that the
software network is becoming more balanced. The tendency
of the average shortest path length d is described in Fig. 11(f).
Shortest path length represents the short execution path in
kernel of Android OS. Path length is increasing in the early
version due to adding new functions. When reaching maxi-
mum, path length begins to decrease due to adding more new
interactions between functions.

B. Evolutions of k-Core Structures

As is demonstrated in Fig. 12, the maximal coreness of
network is increasing with growth of version number. This
result depicts that the structure of kernel network becomes
more complex with more hierarchies. Adding new functions
in the periphery of original network can increase the graph
coreness. It is checked in Fig. 13 about the correlation
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Fig. 11. Evolutions of topological properties of function-call network. (a and b) The evolution of network scale in all Linux kernel versions from V.4.0 to
V.4.20. There are four basic topological features chosen to make further evolution analysis: Average degree (c), Clustering coefficient (d), Average betweenness
(e) and Average shortest path length (f).

Fig. 12. Evolution of graph coreness in function-call network of 21 kernel
releases. Graph coreness seems to grow step by step with the version updates
of Linux kernel.

between the core size in different kernel versions and the
corresponding coreness. For a given version, core size is
decreasing with increasing coreness, suggesting a tree-like
structure for function-call network. With the evolution of
kernel version, the size of each core increases for a given
coreness, where the size difference between different shells
is the most at periphery. The core size of the central part
of network is rather small, which seems performing different

Fig. 13. Relations between core size and coreness in different kernel version.
Different colors are utilized to distinguish the versions from V4.0 to V4.20.
In each curve, core size is decreasing with increasing coreness.

basic functions. Furthermore, the speed of decreasing along the
coreness becomes faster with the version iteration. The result
shows that most of new functions are added at the periphery
of the kernel structure.

For a better understanding and visualization of the evolu-
tions of k-core structures, Fig. 14 displays the 9-cores of kernel
networks in some specific versions containing V4.3, V4.7,
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Fig. 14. Sketches of the 9-cores of kernel networks in some specific versions. These six versions containing V4.3, V.4.7, V.4.8, V.4.12, V.4.14 and
V.4.18 represent some major changes during the whole evolution. The maximum of coreness is increasing from 9 to 14 and the 9-core structure becomes
more complicated.

V4.8, V4.12, V4.14 and V4.18. The maximum of coreness in
these kernel networks is increasing from 9 to 14. The changes
of function distribution in 9-core can be obtained in Fig. 15,
where the 9-cores of all versions are chosen to make module
distribution analysis. In Fig. 15, the evolution of the 9-core is
composed of four stages: Stage 1 (V4.0-V4.2), Stage 2 (V4.3-
V4.7), Stage 3 (V4.8-V4.15) and Stage 4 (V4.16- V4.20).
In general, the size of 9-core is growing with the increasing
of sub-version in each stage except the rather small scale in
Stage 2. The analysis of module distribution in Fig.15 suggests
that this small scale in Stage 2 is mainly caused by the shrunk
fs (file-system) module. It can also be obtained that the net
module begins to appear in 9-core firstly in V4.8. Drivers is
taking more ratio along the development process. In the next
subsection, we will specify the relation between the evolution
of function-call network and the real kernel structure.

C. Analysis Based on the Change-Log of Kernel

Some prominent features and update information of specific
versions in Linux kernel’s change-log have been provided in
TABLE II in order to deeply understand the evolution of
function-call network in kernel.

In version 4.3, the remove of the Ext3 file-system which is
the core part of the kernel connected with many other modules
actually caused the reduction of many nodes with large degree
and smaller 9-core in Fig. 15. In Linux kernel, the fs module is
highly connected with kernel, mm (memory management) and
drivers, the core of kernel will decrease apparently once the
part of fs module has been removed. Meanwhile, the addition
of many new drivers brings a lot of functions with low degree

TABLE II

[49] PROMINENT FEATURES FOR SOME TYPICAL VERSION OF KERNEL

to the kernel. The two parts confirmed before result in the
sharp descending of degree and clustering coefficient in V4.3.
The updated structure will naturally cause the increase of
betweenness with more loads on bridge nodes, and longer
shortest path length.

In version 4.8, Linux kernel supports for the transparent
Huge Pages in the page cache and eXpress Data Path. These
two new features mainly influence the fs, mm, kernel and net
modules by adding new functions and calls. Although some
central parts become larger and more complex, this growth
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Fig. 15. The evolution of module distribution in 9-core of function-
call networks. Each column represents a 9-core structure in corresponding
version and is divided into eight parts with different colors to show the
module distribution. The eight parts is respectively block, ipc (Inter-process
communication), lib (dependent libraries), mm (memory management), kernel,
net, fs (file system) and drivers.

compared to that in drivers distributed in regional part of
kernel is rather low, which also indicates the heterogeneous
growth of kernel network. This analysis can explain the
substantial increase of average degree but slight promotion
of clustering coefficient.

In version 4.16, there is an initial platform support added
for the jailhouse hypervisor. Jailhouse hypervisor is a static
partitioning hypervisor that runs bare metal but cooperates
closely with Linux. Since the jailhouse is a hypervisor of
running kernel, it needs many interactions with the central
parts of different modules in kernel. It might be a part of the
reason resulting in the fact that the scale of 9-core is increasing
with the growth of each major module in V4.16.

The above analysis demonstrates that the model of kernel
in Android OS using complex network theory can reflect the
practical effect of development changes in a global view. It is
expected to be utilized for the analysis of current or future
software systems which are difficult to analyze by traditional
methods.

D. Evolutions of Reliability Based on Percolation

In this subsection, the percolation analysis of all 21 kernel
networks has been implemented. The result of degree-based
attack is shown in Fig. 16. The system connectivity is defined
as the proportion of the maximal connected component G. The
trend of connectivity of all kernel networks is surprisingly
similar. This may reflect the hidden stable pattern of Linux
kernel over many versions.

VI. CONCLUSION

In this paper, we focus on the analysis of network reliability
and evolution features in software system. To deeply under-
stand the software network in Android OS, the percolation
method is applied to analyze the function-call graph in dif-
ferent granularity. In this way, the results show nodes with

Fig. 16. The evolution of network percolation analysis in all kernel versions.
Each dotted curve with different color represents a kernel network of specific
version. G is the proportion of maximal connected component in the whole
function-call network and attack ratio is the percentage of the nodes we
remove in the network based on degree sequence. The trends of all curves
seem similar.

higher strength seems more important to system reliability
in community-interaction network. For the community of
software network, we found three different relations between
the topological properties and the community size. Moreover,
we found that although topological properties of kernel net-
work is evolving with different released versions, percola-
tion properties seems rather stable. The result containing the
evolution of topological networks, k-core decomposition and
percolation analysis is highly connected with the practical
applications in kernel of different versions, which can be used
to support reliability testing analysis of current or future soft-
ware system. This finding may also help the system design to
understand the different roles of functions in the architecture,
from the viewpoint of the whole software system. Our future
directions mainly refer to the correlation analysis between
major faults of kernel versions, system reliability models
and the investigation of kernel healthy status in network
perspective.
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